COURSE CODE	COURSE NAME		YEAR OF INTRODUCTION				
		L-T-P-C					
EC360	Soft Computing	3-0-0 -3	2016				
Prerequisite: N							
Course objectiv							
	ze various components of soft computi	ng like fuzzy lo	ogic, neural networks				
Ū	and genetic algorithm.						
2. To give an overview of fuzzy Logic and to understand the concepts and terminologies of							
	fuzzy systems						
-	3. To give a description on artificial neural networks with its advantages and application.						
•	4. To study the fundamentals of Genetic Algorithm (GA).						
	nd the concepts of hybrid systems.						
Syllabus:	Landaura Nierral Nierraulas Auguli		-1				
Fuzzy sets and systems. Neural Networks - Applications - typical architecture, pattern							
Classification and pattern Association. Fundamentals of Genetic Algorithm, AI search							
algorithm and hybrid structure.							
Expected outco							
The students will be able to:							
Machines.	1. Identify and describe soft computing techniques and their roles in building intelligent						
 Apply fuzzy logic and reasoning to handle uncertainty and solve engineering problems Recognize the feasibility of applying a soft computing methodology for a particular 							
Problem.	the reasonity of apprying a soft con	iputing method	uology loi a particular				
	4. Apply neural networks to pattern classification and regression problems.						
11.	tic algorithms to combinatorial optimiz	U 1					
Text Books:		intern processing					
	erg, "Genetic Algorithms: Search, C	ptimization an	d Machine Learning".				
	esley,N.Y, 1989.	I					
	. Fausett, (1993) "Fundamentals	of Neural N	etworks: Architecture,				
	and Applications", Prentice Hall.		,				
	Ross, "Fuzzy Logic with Engineering A	Applications" W	/iley India.				
References:			•				
1. Ibrahim A. I	M., Introduction to Applied Fuzzy Elec	tronics, PHI, 20	013.				
2. J. Yen and	R. Langari, Fuzzy Logic, Intelligence	ce, Control and	l Information, Pearson				
Education.							
3. K.H.Lee, Fin	rst Course on Fuzzy Theory and Applic	cations, Springe	er-Verlag.				
4. Lin C. T. an	d C.S. G. Lee, Neural Fuzzy Systems,	Prentice Hall, 1	.996.				
	Synthesis and Applications" Prentice H						
	andan and S.N. Deepa, Principles of	Soft Computin	ng, Wiley India, 2007.				
ISBN: 10: 8	1-265-1075-7.						

	Course Plan				
Module	Course content	Hours	End Sem. Exam Marks		
	Soft computing: Introduction, soft computing vs hard computing, Fuzzy Computing, Neural Computing, Genetic Algorithms. applications of soft computing	2			
Ι	Introduction to fuzzy sets and systems-crispness, vagueness, uncertainty and fuzziness. Basics of fuzzy sets, membership functions, support of a fuzzy set height, normalized fuzzy set, alpha cuts.	3	15		
	Type- 2 fuzzy sets. Operation on fuzzy set-complement, intersection, union, Demorgan's Law Equality & subset hood.	4			
II	Extension Principle and its application, Fuzzy relation- operations, projection, max-min, min-max composition, cylindrical extension.	3	15		
FIRST INTERNAL EXAM					
ш	Reflexivity, symmetry and transitivity of fuzzy relations. Fuzzy prepositions, fuzzy connectives, linguistic variables, hedges.	4	15		
	Approximate reasoning or fuzzy inference, Fuzzy rule based system. Fuzzification and defuzzification using centroid, centre of sums.	4			
IV	duction to Neural Networks - Applications –Biological on- Typical architecture of Artificial Neural Networks - 4 mon activation function.		15		
	McCulloh Pitts Neuron – Architecture, logic implementatons. Supervised and Unsupervised learning	4	<u> </u>		
	SECOND INTERNAL EXAM				
V	Linear Separability, Pattern Classification: Perceptrons	2			
	Back propagation network and its architecture, Back propagation learning, back propagation algorithm	4	20		
VI	Genetic Algorithm Basic concepts, Initialization and selection, Survival of the Fittest - Fitness Computations.	5	20		
	Operators - Cross over, Mutation.	3			
END SEMESTER EXAM					

Question Paper (End semester exam)

Max. Marks: 100

Time : 3 hours

The question paper shall consist of three parts. Part A covers modules I and II, Part B covers modules III and IV, and Part C covers modules V and VI. Each part has three questions uniformly covering the two modules and each question can have maximum four subdivisions. In each part, any two questions are to be answered. Mark patterns are as per the syllabus with 50 % for theory, derivation, proof and 50% for logical/numerical problems.